题目内容

【题目】如图,把长为6,宽为3的矩形折成正三棱柱,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱的交点记为.

1)在三棱柱中,若过三点做一平面,求截得的几何体的表面积;

2)求三棱柱中异面直线所成角的余弦值.

【答案】12

【解析】

1)由操作可知,该正三棱柱的底面是边长为2的正三角形,正三棱柱的高为3.所求几何体的表面积为各面的面积之和,利用表面积公式求解即可;

2)延长H,使,连结,可以证明出,所以异面直线所成的角即为(或其补角),利用余弦定理求值即可.

1)由操作可知,该正三棱柱的底面是边长为2的正三角形,正三棱柱的高为3.所求几何体的表面积为各面的面积之和.

又在三角形中,

2)延长H,使,连结,所以有平行四边形的性质可知

,所以异面直线所成的角即为(或其补角)

中,

由余弦定值得

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网