题目内容
【题目】在直角坐标系中,直线与抛物线交于,两点,且.
(1)求的方程;
(2)试问:在轴的正半轴上是否存在一点,使得的外心在上?若存在,求的坐标;若不存在,请说明理由..
【答案】(1); (2)在轴的正半轴上存在一点,使得的外心在上.
【解析】
(1)联立,得,利用 ,结合韦达定理列方程求得,从而可得结果;(2)求出线段的中垂线方程.联立,得,解得或,从而的外心的坐标为或,分别利用求得的值,验证是否符合题意即可.
(1)联立,得,
则,,
从而 .
, ,
即,解得,故的方程为.
(2)设线段的中点为,
由(1)知,,,
则线段的中垂线方程为,即.
联立,得,解得或,
从而的外心的坐标为或.
假设存在点 ,设的坐标为,
,
,则.
,.
若的坐标为,则,
,则的坐标不可能为.
故在轴的正半轴上存在一点,使得的外心在上.
练习册系列答案
相关题目
【题目】2018年,南昌市召开了全球VR产业大会,为了增强对青少年VR知识的普及,某中学举行了一次普及VR知识讲座,并从参加讲座的男生中随机抽取了50人,女生中随机抽取了70人参加VR知识测试,成绩分成优秀和非优秀两类,统计两类成绩人数得到如下的列联表:
优秀 | 非优秀 | 总计 | |
男生 | a | 35 | 50 |
女生 | 30 | d | 70 |
总计 | 45 | 75 | 120 |
(1)确定a,d的值;
(2)试判断能否有90%的把握认为VR知识的测试成绩优秀与否与性别有关;
(3)为了宣传普及VR知识,从该校测试成绩获得优秀的同学中按性别采用分层抽样的方法,随机选出6名组成宣传普及小组.现从这6人中随机抽取2名到校外宣传,求“到校外宣传的2名同学中至少有1名是男生”的概率.
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |