题目内容

【题目】某校高一年级3个班有10名学生在全国英语能力大赛中获奖,学生来源人数如表:

班别

高一(1)班

高一(2)班

高一(3)班

人数

3

6

1

若要求从10位同学中选出两位同学介绍学习经验,设其中来自高一(1)班的人数为ξ,求随机变量ξ的分布列及数学期望E(ξ).

【答案】解:随机变量ξ的取值可能为0,1,2.
P(ξ=0)= = ,P(ξ=1)= = ,P(ξ=2)= =

ξ

0

1

2

P

∴E(ξ)= +1× +2× =
答:数学期望为
【解析】随机变量ξ的取值可能为0,1,2.利用“超几何分布”的概率计算公式及其分布列、数学期望即可得出.
【考点精析】本题主要考查了离散型随机变量及其分布列的相关知识点,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网