题目内容
【题目】已知点、为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是.
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为、,求的值;
(3)过圆上任意一点作圆的切线交双曲线于、两点,中点为,求证:
【答案】(1);(2);(3)详见解析.
【解析】
(1),根据可得,利用双曲线的定义可得从而得到双曲线的方程.
(2)设点,利用渐近线的斜率可以得到夹角的余弦为,利用点在双曲线上又可得为定值,故可得的值.
(3)设,切线的方程为:,证明等价于证明,也就是证明 ,联立切线方程和双曲线方程,消元后利用韦达定理可以证明.
(1)设的坐标分别为,
因为点在双曲线上,所以,即,所以,
在中, ,,所以,
由双曲线的定义可知: ,
故双曲线的方程为: .
(2)由条件可知:两条渐近线分别为;.
设双曲线上的点,
设的倾斜角为,则,又 ,所以,
故,
所以的夹角为,且.
点到两条渐近线的距离分别为,.
因为在双曲线上,所以 ,
所以.
(3)由题意,即证: ,设,
切线的方程为: .
时,切线的方程代入双曲线中,化简得:
(,
所以,.
又,
所以.
时,易知上述结论也成立.所以.
综上, ,所以.
练习册系列答案
相关题目