题目内容
【题目】如图,在四棱锥中,正方形所在平面与正所在平面垂直,分别为的中点,在棱上.
(1)证明:平面.
(2)已知,点到的距离为,求三棱锥的体积.
【答案】(1)证明见解析;(2)
【解析】
(1)取中点,连接,;根据线面平行的判定定理可分别证得平面和平面;根据面面平行判定定理得平面平面,利用面面平行性质可证得结论;(2)根据面面垂直性质可知平面,由线面垂直性质可得;根据等边三角形三线合一可知;根据线面垂直判定定理知平面,从而得到;设,表示出三边,利用面积桥构造方程可求得;利用体积桥,可知,利用三棱锥体积公式求得结果.
(1)取中点,连接,
为中点
又平面,平面 平面
四边形为正方形,为中点
又平面,平面 平面
,平面 平面平面
又平面 平面
(2)为正三角形,为中点
平面平面,,平面平面,平面
平面,又平面
又,平面 平面
平面
设,则,,
,即:,解得:
练习册系列答案
相关题目