题目内容
【题目】已知f(x)= ,a<b<c,且f(a)=f(b)=f(c)=0,现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(2)>0;④f(0)f(2)<0.其中正确结论的序号为( )
A.①③
B.①④
C.②④
D.②③
【答案】D
【解析】解:由题意得,f′(x)=3x2﹣9x+6=3(x﹣1)(x﹣2),
∴当x<1或x>2时,f′(x)>0,当1<x<2时,f′(x)<0,
∴函数f(x)的增区间是(﹣∞,1),(2,+∞),减区间是(1,2),
∴函数的极大值是f(1)= ,函数的极小值是f(2)=2﹣abc,
∵a<b<c,且f(a)=f(b)=f(c)=0,
∴a<1<b<2<c,f(1)>0且f(2)<0,解得2< ,
∴f(0)=﹣abc<0,
则f(0)f(1)<0、f(0)f(2)>0,
故选D.
【考点精析】本题主要考查了函数的零点与方程根的关系和函数的零点的相关知识点,需要掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点;函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点才能正确解答此题.
练习册系列答案
相关题目