题目内容
【题目】已知函数在区间上有最大值4 和最小值1,设.
(1)求的值;
(2)若不等式在区间上有解,求实数的取值范围;
(3)若有三个不同的实数解,求实数的取值范围.
【答案】(1);(2);(3)
【解析】试题分析:
(1)由题意可得二次函数在[2,3]上为增函数,据此可得: ,求解方程组可得: .
(2)由题意知 ,分离参数有,结合二次函数的性质换元可得.
(3)原方程可化为:
令,换元后讨论可得.
试题解析:
(1)
∴ ∴在[2,3]上为增函数 ∴ ∴.
(2)由题意知 ∴不等式可化为
可化为 令,
∴,故,令,
由题意可得 在上有解等价于
,.
(3)原方程可化为:
令,则方程可化为:
∵原方程有三个不同的实数解。由的图象知
有两个根
且或
证,则或
∴.
【题目】某城市理论预测2010年到2014年人口总数与年份的关系如下表所示
年份2010+x(年) | 0 | 1 | 2 | 3 | 4 |
人口数y(十万) | 5 | 7 | 8 | 11 | 19 |
(1)请根据上表提供的数据,求出y关于x的线性回归方程;
(2) 据此估计2015年该城市人口总数。
【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下列联表:
有明显拖延症 | 无明显拖延症 | 合计 | |
男 | 35 | 25 | 60 |
女 | 30 | 10 | 40 |
合计 | 65 | 35 | 100 |
(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为,试求随机变量的分布列和数学期望;
(Ⅱ)若在犯错误的概率不超过的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.
附:独立性检验统计量,其中.
独立性检验临界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |