题目内容
【题目】已知函数。
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在上是减函数,求实数的取值范围。
【答案】(1) 函数f(x)的单调递减区间是(0, );单调递增区间是(,+∞);(2) a≤-.
【解析】试题分析:(Ⅰ)先求出函数的导数,再通过讨论a的范围,从而求出其单调区间,(Ⅱ)由g(x)=+x2+2aln x得g′(x)=-+2x+,建立新函数,求出其最小值,解出即可.
试题解析:
(Ⅰ)函数f(x)的定义域为(0,+∞).
①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);
②当a<0时,f′(x)=.
当x变化时,f′(x),f(x)的变化情况如下:
x | (0, ) | (,+∞) | |
f′(x) | - | 0 | + |
f(x) | 极小值 |
由上表可知,函数f(x)的单调递减区间是(0, );单调递增区间是(,+∞).
(Ⅱ )由g(x)=+x2+2aln x,得g′(x)=-+2x+,
由已知函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立,
即-+2x+≤0在[1,2]上恒成立.即a≤-x2在[1,2]上恒成立.
令,则h′(x)=--2x=-(+2x)
,所以h(x)在[1,2]上为减函数,
h(x)min=h(2)=-, 所以a≤-.
【题目】某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:
组号 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 5 | 0.05 |
第2组 | [60,70) | 0.35 | |
第3组 | [70,80) | 30 | |
第4组 | [80,90) | 20 | 0.20 |
第5组 | [90,100] | 10 | 0.10 |
合计 | 100 | 1.00 |
(Ⅰ)求的值;
(Ⅱ)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率。