题目内容
【题目】已知函数.
(1)若曲线在处切线的斜率为,求此切线方程;
(2)若有两个极值点,求的取值范围,并证明:.
【答案】(1) .
(2)见解析.
【解析】分析:第一问首先利用导数的几何意义以及切点既在切线上,又在函数图像上,从而利用相应的公式求得切线方程;第二问从函数有两个极值点,对应的是其导数等于零有两个不相等的正根,构造新函数,利用导数研究其走向,分类讨论证得结果.
详解:(1)∵,∴,解得,
∴,故切点为,
所以曲线在处的切线方程为.
(2),令,得.
令,则,
且当时,;当时,;时,.
令,得,
且当时,;当时,.
故在递增,在递减,所以.
所以当时,有一个极值点;
时,有两个极值点;
当时,没有极值点.
综上,的取值范围是.
因为是的两个极值点,所以即…①
不妨设,则,,
因为在递减,且,所以,即…②.
由①可得,即,
由①,②得,所以.
练习册系列答案
相关题目