题目内容
正项数列{an}满足
-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an;
(2)令bn=
,求数列{bn}的前n项和Tn.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045082406.png)
(1)求数列{an}的通项公式an;
(2)令bn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045098679.png)
(1) an=2n (2) Tn=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045129649.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045129649.png)
解:(1)已知an与n的关系式,求an,这一类题目应把式子进行变形,得an=f(n),从而求出通项公式.
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045082406.png)
得(an-2n)(an+1)=0.
故an=-1(因数列为正项数列,舍去)或an=2n.
(2)因bn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045207664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045223339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045316351.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045347416.png)
所以Tn=b1+b2+b3+…+bn
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045223339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045379225.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045223339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045223339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045223339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045457325.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045223339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045457325.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045503303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045223339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045316351.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045347416.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045223339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045379225.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045223339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045223339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045457325.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045457325.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045503303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045316351.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045347416.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045223339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045347416.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041045129649.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目