题目内容
设曲线y=xn(1-x)在x=2处的切线与y轴交点的纵坐标为an,则数列{
}的前n项和Sn等于 .
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040005949386.png)
2n+1-2
∵y'=nxn-1-(n+1)xn,∴y'|x=2=n·2n-1-(n+1)·2n=-n·2n-1-2n,
∴切线方程为y+2n=(-n·2n-1-2n)(x-2),
令x=0得y=(n+1)·2n,即an=(n+1)·2n,
∴
=2n,∴Sn=2n+1-2.
∴切线方程为y+2n=(-n·2n-1-2n)(x-2),
令x=0得y=(n+1)·2n,即an=(n+1)·2n,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040005949386.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目