题目内容
已知数列an=n-16,bn=(-1)n|n-15|,其中n∈N*.
(1)求满足an+1=|bn|的所有正整数n的集合;
(2)若n≠16,求数列
的最大值和最小值;
(3)记数列{anbn}的前n项和为Sn,求所有满足S2m=S2n(m<n)的有序整数对(m,n).
(1)求满足an+1=|bn|的所有正整数n的集合;
(2)若n≠16,求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119855482.png)
(3)记数列{anbn}的前n项和为Sn,求所有满足S2m=S2n(m<n)的有序整数对(m,n).
(1){n|n≥15,n∈N*}(2)
(n=18),最小值-2(n=17)(3)S16=S14,m=7,n=8
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119870388.png)
(1)an+1=|bn|,n-15=|n-15|.
当n≥15时,an+1=|bn|恒成立;
当n<15时,n-15=-(n-15),n=15(舍去).
∴n的集合为{n|n≥15,n∈N*}.
(2)
=
.
(ⅰ)当n>16时,n取偶数时,
=
,
当n=18时,
=
,无最小值;n取奇数时,
=-1-
,
n=17时,
=-2,无最大值.
(ⅱ)当n<16时,
=
.
当n为偶数时,
=
=-1-
.
n=14时,
=-
,
=-
;
当n为奇数时,
=
=1+
,
n=1时,
=1-
=
,n=15时,
=0.
综上,
最大值为
(n=18),最小值-2(n=17).
(3)当n≤15时,bn=(-1)n-1(n-15),a2k-1b2k-1+a2kb2k=2(16-2k)≥0,
当n>15时,bn=(-1)n(n-15),a2k-1b2k-1+a2kb2k=2(2k-16)>0,其中a15b15+a16b16=0,
∴S16=S14,m=7,n=8.
当n≥15时,an+1=|bn|恒成立;
当n<15时,n-15=-(n-15),n=15(舍去).
∴n的集合为{n|n≥15,n∈N*}.
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119855482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119901781.png)
(ⅰ)当n>16时,n取偶数时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119855482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119933740.png)
当n=18时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119948843.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119870388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119855482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119995500.png)
n=17时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041120104823.png)
(ⅱ)当n<16时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119855482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041120151815.png)
当n为偶数时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119855482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041120198740.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119995500.png)
n=14时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119948843.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041120245338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041120104823.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041120291424.png)
当n为奇数时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119855482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041120323699.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119995500.png)
n=1时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119948843.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041120369335.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041120385393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041120104823.png)
综上,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119855482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041119870388.png)
(3)当n≤15时,bn=(-1)n-1(n-15),a2k-1b2k-1+a2kb2k=2(16-2k)≥0,
当n>15时,bn=(-1)n(n-15),a2k-1b2k-1+a2kb2k=2(2k-16)>0,其中a15b15+a16b16=0,
∴S16=S14,m=7,n=8.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目