题目内容

定义“正对数”:ln+x=
0,0<x<1
lnx,x≥1
,现有四个命题:
①若a>0,b>0,则ln+(ab)=bln+a
②若a>0,b>0,则ln+(ab)=ln+a+ln+b
③若a>0,b>0,则ln+(
a
b
)≥ln+a-ln+b

④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2
其中正确的命题有(  )
A、①③④B、①②③
C、①②④D、②③④
考点:命题的真假判断与应用
专题:新定义,函数的性质及应用
分析:根据“正对数”概念,对①②③④逐个分析判断即可.
解答:解:∵定义“正对数”:ln+x=
0,0<x<1
lnx,x≥1

①当0<a<1,b>0时,0=0b<ab<1b=1,左=右=0;
当a>1,b>0时,ab>1,左端ln+(ab)=lnab=blna=右端,故①真;
②若0<a<1,b>0时,ab∈(0,1),也可能ab∈(1,+∞),举例如下:ln+
1
3
×2)=0≠ln2=ln+
1
3
+ln+2,故②错误;
③若0<a<b<1,0<
a
b
<1,左端=0,右端=0,左端≥右端,成立;
当0<a<1≤b,0<
a
b
<1,ln+b=lnb≥0,左端=0,右端=0-lnb≤0,左端≥右端,成立;
当1≤a<b时,ln+
a
b
)=0,ln+a=lna,ln+b=lnb,左端=0≥lna-lnb=右端,成立;
同理可知,当0<b<a<1,0<b<1≤a,1≤b<a时,总有左端≥右端;
当0<a=b时,左端=右端,不等式也成立;
综上,③真;
④若0<a+b<1,b>0时,左=0,右端≥0,显然成立;
若a+b>1,则ln+(a+b)≤ln+a+ln+b+ln2?ln+
a+b
2
≤ln+a+ln+b,成立,故④真;
综上所述,正确的命题有①③④.
故选:A.
点评:本题考查命题的真假判断与应用,着重考查对数函数的性质,考查新定义的理解与应用,突出考查分类讨论思想与综合运算、逻辑思维及分析能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网