题目内容

已知p:f(x)=
1-x
3
,且|f(a)|<2,q:集合A={x|x2+(a+2)x+1=0,x∈R},且A≠∅.若p或q为真命题,p且q为假命题,求实数a的取值范围.
|f(a)|=|
1-a
3
|<2
成立,则-6<1-a<6,解得-5<a<7,
即当-5<a<7时,p是真命题;
若A≠∅,则方程x2+(a+2)x+1=0有实数根,
由△=(a+2)2-4≥0,解得a≤-4,或a≥0,
即当a≤-4,或a≥0时,q是真命题;
由于p或q为真命题,p且q为假命题,
∴p与q一真一假,
故知所求a的取值范围是(-∞,-5]∪(-4,0)∪[7,+∞).…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网