题目内容
如图,椭圆C0:(a>b>0,a,b为常数),动圆C1:x2+y2=t12,b<t1<a.点A1,A2分别为C0的左,右顶点,C1与C0相交于A,B,C,D四点.
(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2:x2+y2=t22与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:t12+t22为定值.
(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2:x2+y2=t22与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:t12+t22为定值.
(1)(x<-a,y<0) (2)见解析
(1)解 设A(x1,y1),B(x1,-y1),
又知A1(-a,0),A2(a,0),
则直线A1A的方程为y=(x+a),①
直线A2B的方程为y=(x-a).②
由①②得y2=(x2-a2).③
由点A(x1,y1)在椭圆C0上,故.
从而y12=b2,
代入③得(x<-a,y<0).
(2)证明 设A′(x2,y2),由矩形ABCD与矩形A′B′C′D′的面积相等,得4|x1||y1|=4|x2||y2|,
故x12y12=x22y22.
因为点A,A′均在椭圆上,
所以b2x12=b2x22.
由t1≠t2,知x1≠x2,所以x12+x22=a2.从而y12+y22=b2,
因此t12+t22=a2+b2为定值.
又知A1(-a,0),A2(a,0),
则直线A1A的方程为y=(x+a),①
直线A2B的方程为y=(x-a).②
由①②得y2=(x2-a2).③
由点A(x1,y1)在椭圆C0上,故.
从而y12=b2,
代入③得(x<-a,y<0).
(2)证明 设A′(x2,y2),由矩形ABCD与矩形A′B′C′D′的面积相等,得4|x1||y1|=4|x2||y2|,
故x12y12=x22y22.
因为点A,A′均在椭圆上,
所以b2x12=b2x22.
由t1≠t2,知x1≠x2,所以x12+x22=a2.从而y12+y22=b2,
因此t12+t22=a2+b2为定值.
练习册系列答案
相关题目