题目内容
【题目】根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方(梯)队和联合军乐团,总规模约1.5万人,是近几次阅兵中规模最大的一次.其中,徒步方队15个.为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行.徒步方队队员,男性身高普遍在175cm至185cm之间;女性身高普遍在163cm至175cm之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184cm至190cm之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C为事件:“某一阅兵女子身高不低于169cm”,根据直方图得到P(C)的估计值为0.5.
(1)求直方图中a,b的值;
(2)估计这个阵营女子身高的平均值 (同一组中的数据用该组区间的中点值为代表)
【答案】(1)a=0.125 (2)169.12cm
【解析】
(1)根据频率分布直方图可得频率,结合P(C)的估计值为0.5从而可计算.
(2)利用组中值可计算这个阵营女子身高的平均值.
解:(1)由已知得,
故
法一:,
.
法二:.
(2)
估计女子的平均身高为(cm).
【题目】在疫情这一特殊时期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:
(Ⅰ)是否有的把握认为“高三学生的这次摸底考试数学成绩与其在线学习时长有关”;
(Ⅱ)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望和方差.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【题目】疫情过后,某商场开业一周累计生成2万张购物单,从中随机抽出100张,对每单消费金额进行统计得到下表:
消费金额(单位:元) | |||||
购物单张数 | 25 | 25 | 30 | ? | ? |
由于工作人员失误,后两栏数据已无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等(用频率估计概率),完成下列问题:
(1)估计该商场开业一周累计生成的购物单中,单笔消费额超过800元的购物单张数;
(2)为鼓励顾客消费,拉动内需,该商场打算在今年国庆期间进行促销活动,凡单笔消费超过600元者,可抽奖一次,中一等奖、二等奖、三等奖的顾客可以分别获得价值元、元、元的奖品.已知中奖率为100%,且一等奖、二等奖、三等奖的中奖率依次构成等差数列,其中一等奖的中奖率为.若今年国庆期间该商场的购物单数量预计比疫情后开业一周的购物单数量增长5%,试预测商场今年国庆期间采办奖品的开销.