题目内容
【题目】已知函数,其中.
(Ⅰ)求的单调区间;
(Ⅱ)若,讨论关于x的方程在区间上实根的个数.
【答案】(Ⅰ)当时,的单调增区间是,单调减区间是.当时,的单调增区间是,单调减区间是.(Ⅱ)当或时,原方程在上仅有一个实根;当时,原方程在上有两个实根.
【解析】
(Ⅰ)求导后,对分类讨论,利用导函数的符号可得单调区间;
(Ⅱ)显然是方程的实根,在的条件下,由(Ⅰ)的单调性可得关于x的方程在区间上无实根,当时,构造函数,求导并对分类讨论可求得结果.
(Ⅰ)由条件,得
令,得.
当时,由,得,由,得.
所以的单调增区间是,单调减区间是.
当时,由,得,由,得.
所以的单调增区间是,单调减区间是.
(Ⅱ)因为,所以是方程的实根.
当时,由(Ⅰ)知单调递增,所以.而,
所以方程在区间上无实根.
当时,.
设,
则.
设,
当时,,所以在上单调递增.
①当,即时,在区间上,总有,从而,所以在上单调递增,,即原方程在上无实根.
②当,即时,因为,所以存在,满足.
所以在上,,单调递减,在上,,单调递增.
又因为,,
所以当,即时,原方程在上有唯一实根,
当,即时,原方程在上无实根;
综上所述,当或时,原方程在上仅有一个实根;
当时,原方程在上有两个实根.
练习册系列答案
相关题目
【题目】小张上班从家到公司开车有两条线路,所需时间(分钟)随交通堵塞状况有所变化,其概率分布如下表所示:
所需时间(分钟) | 30 | 40 | 50 | 60 |
线路一 | 0.5 | 0.2 | 0.2 | 0.1 |
线路二 | 0.3 | 0.5 | 0.1 | 0.1 |
则下列说法正确的是( )
A.任选一条线路,“所需时间小于50分钟”与“所需时间为60分钟”是对立事件
B.从所需的平均时间看,线路一比线路二更节省时间
C.如果要求在45分钟以内从家赶到公司,小张应该走线路一
D.若小张上、下班走不同线路,则所需时间之和大于100分钟的概率为0.04