题目内容
【题目】已知数列 的通项公式是 ,那么这个数列是( )
A.递增数列
B.递减数列
C.常数列
D.摆动数列
【答案】A
【解析】解答: = =1- ,随着n的增大而增大.故选:A.分析:数列的分类
按项之间的大小关系:递增数列,递减数列,摆动数列,常数列.
递增数列:从第2项起,每一项都大于它的前一项的数列;
递减数列:从第2项起,每一项都小于它的前一项的数列;
摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列;
常数列:各项都相等的数列.
【考点精析】根据题目的已知条件,利用数列的定义和表示的相关知识可以得到问题的答案,需要掌握数列中的每个数都叫这个数列的项.记作an,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n的项叫第n项(也叫通项)记作an.
练习册系列答案
相关题目
【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.
(个) | 2 | 3 | 4 | 5 | 6 |
(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分店时,才能使区平均每个店的年利润最大?
(参考公式: ,其中)