题目内容
【题目】如图,在三棱柱中,已知四边形为矩形,,,,的角平分线交于.
(1)求证:平面平面;
(2)求二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)过点作交于,连接,设,连接,由角平分线的性质,正方形的性质,三角形的全等,证得,,由线面垂直的判断定理证得平面,再由面面垂直的判断得证.
(2)平面几何知识和线面的关系可证得平面,建立空间直角坐标系,求得两个平面的法向量,根据二面角的向量计算公式可求得其值.
(1)如图,过点作交于,连接,设,连接,,,
又为的角平分线,四边形为正方形,,
又,,,,,又为的中点,
又平面,,平面,
又平面,平面平面,
(2)在中,,,,在中,,,
又,,,,
又,,平面,平面,
故建立如图空间直角坐标系,则,,,
,,,,
设平面的一个法向量为,则,,
令,得,
设平面的一个法向量为,则,
,令,得
,由图示可知二面角是锐角,
故二面角的余弦值为.
练习册系列答案
相关题目