ÌâÄ¿ÄÚÈÝ

1£®ÈôÊýÁÐ{an}Âú×ã¡°¶ÔÈÎÒâÕýÕûÊýn£¬$\frac{{{a_n}+{a_{n+2}}}}{2}¡Ü{a_{n+1}}$ºã³ÉÁ¢¡±£¬Ôò³ÆÊýÁÐ{an}Ϊ¡°²î·ÇÔöÊýÁС±£®
¸ø³öÏÂÁÐÊýÁÐ{an}£¬n¡ÊN*£º
¢Ùan=2n+$\frac{1}{n}$+1£¬¢Úan=n2+1£¬¢Ûan=2n+1£¬¢Üan=ln$\frac{n}{n+1}$£¬¢Ýan=2n+$\frac{1}{n}$£®
ÆäÖÐÊÇ¡°²î·ÇÔöÊýÁС±µÄÓТۢܣ¨Ð´³öËùÓÐÂú×ãÌõ¼þµÄÊýÁеÄÐòºÅ£©£®

·ÖÎö °Ñ$\frac{{{a_n}+{a_{n+2}}}}{2}¡Ü{a_{n+1}}$ºã³ÉÁ¢»¯Îªan+an+2¡Ü2an+1ºã³ÉÁ¢£¬È»ºóÖðÒ»ÑéÖ¤5¸öÊýÁеô𰸣®

½â´ð ½â£º¢ÙÈôan=2n+$\frac{1}{n}$+1Ϊ¡°²î·ÇÔöÊýÁС±£¬Ôò${2}^{n}+\frac{1}{n}+1+{2}^{n+2}+\frac{1}{n+2}+1¡Ü2£¨{2}^{n+1}+\frac{1}{n+1}+1£©$ºã³ÉÁ¢£¬
¼´${2}^{n}¡Ü\frac{-2}{n£¨n+1£©£¨n+2£©}$ºã³ÉÁ¢£¬´ËʽÏÔÈ»²»ÕýÈ·£¬¢Ù²»ÊÇ¡°²î·ÇÔöÊýÁС±£»
¢ÚÈôan=n2+1Ϊ¡°²î·ÇÔöÊýÁС±£¬Ôòn2+1+£¨n+2£©2+1¡Ü2£¨n+1£©2+2£¬
¼´2¡Ü0ºã³ÉÁ¢£¬´ËʽÏÔÈ»²»ÕýÈ·£¬¢Ú²»ÊÇ¡°²î·ÇÔöÊýÁС±£»
¢ÛÈôan=2n+1Ϊ¡°²î·ÇÔöÊýÁС±£¬Ôò2n+1+2£¨n+2£©+1¡Ü2[2£¨n+1£©+1]£¬
¼´0¡Ü0ºã³ÉÁ¢£¬´ËʽÏÔÈ»ÕýÈ·£¬¢ÛÊÇ¡°²î·ÇÔöÊýÁС±£»
¢ÜÈôan=ln$\frac{n}{n+1}$Ϊ¡°²î·ÇÔöÊýÁС±£¬Ôòln$\frac{n}{n+1}$+ln$\frac{n+2}{n+3}$¡Ü2ln$\frac{n+1}{n+2}$£¬
¼´$\frac{n}{n+1}•\frac{n+2}{n+3}¡Ü£¨\frac{n+1}{n+2}£©^{2}$ºã³ÉÁ¢£¬Ò²¾ÍÊÇ2n+3¡Ý0ºã³ÉÁ¢£¬´ËʽÏÔÈ»ÕýÈ·£¬¢ÜÊÇ¡°²î·ÇÔöÊýÁС±£»
¢ÝÈôan=2n+$\frac{1}{n}$Ϊ¡°²î·ÇÔöÊýÁС±£¬Ôò$£¨2n+\frac{1}{n}£©+[2£¨n+2£©+\frac{1}{n+2}]$$¡Ü2[2£¨n+1£©+\frac{1}{n+1}]$£¬
¼´2¡Ü0ºã³ÉÁ¢£¬´ËʽÏÔÈ»²»ÕýÈ·£¬¢Ú²»ÊÇ¡°²î·ÇÔöÊýÁС±£®
¹Ê´ð°¸Îª£º¢Û¢Ü£®

µãÆÀ ±¾ÌâÊÇж¨ÒåÌ⣬¿¼²éÁËÊýÁеĺ¯ÊýÌØÐÔ£¬¿¼²éÁ˼ÆËãÄÜÁ¦£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø