题目内容

【题目】a≠b,解关于x的不等式a2xb2(1-x)≥[axb(1-x)]2

【答案】{x|0≤x≤1}.

【解析】

将原不等式化简为(ab)2(x2x) ≤0,由条件得到系数(ab)2>0,直接解出不等式x2x≤0即可.

解:将原不等式化为

(a2b2)x+b2≥(ab)2x2+2(a-b)bxb2

移项,整理后得 (ab)2(x2x) ≤0,…

ab (ab)2>0,

x2x≤0,

x(x-1) ≤0.

解此不等式,得解集 {x|0≤x≤1}.

【点睛】

本小题主要考查不等式基本知识,不等式的解法;解题时要注意公式的灵活运用.对于含参的二次不等式问题,先判断二次项系数是否含参,接着讨论参数等于0,不等于0,再看式子能否因式分解,若能够因式分解则进行分解,再比较两根大小,结合图像得到不等式的解集.

型】解答
束】
19

【题目】Sn是等差数列{an}的前n项和,已知的等比中项为,且的等差中项为1,求数列{an}的通项公式。

【答案】.

【解析】

设等差数列{an}的首项为a1,公差为d,运用等差中项和等比中项的定义,利用等差数列的求和公式,代入可求a1,d,解方程可求通项an

设等差数列{an}的首项,公差为,则通项为

项和为,依题意有,

其中,由此可得,

整理得, 解方程组得,

由此得;或.

经检验均合题意.

所以所求等差数列的通项公式为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网