题目内容
4.将两颗骰子各掷一次,设事件A=“两个点数不相同”,B=“至少出现一个6点”,则概率P(A|B)等于( )A. | $\frac{10}{11}$ | B. | $\frac{5}{11}$ | C. | $\frac{5}{18}$ | D. | $\frac{5}{36}$ |
分析 根据条件概率的含义,P(A|B)其含义为在B发生的情况下,A发生的概率,即在“至少出现一个6点”的情况下,“两个点数都不相同”的概率,分别求得“至少出现一个6点”与“两个点数都不相同”的情况数目,进而相比可得答案.
解答 解:根据条件概率的含义,P(A|B)其含义为在B发生的情况下,A发生的概率,
即在“至少出现一个6点”的情况下,“两个点数都不相同”的概率,
“至少出现一个6点”的情况数目为6×6-5×5=11,
“两个点数都不相同”则只有一个6点,共C21×5=10种,
故P(A|B)=$\frac{10}{11}$.
故选:A.
点评 本题考查条件概率,注意此类概率计算与其他的不同,P(A|B)其含义为在B发生的情况下,A发生的概率.
练习册系列答案
相关题目
16.袋中装有6只白球,5只黄球,4只红球,从中任取一球,抽到不是白球的概率为( )
A. | $\frac{2}{5}$ | B. | $\frac{4}{15}$ | C. | $\frac{3}{5}$ | D. | .非以上答案 |
19.已知△ABC的三边长分别为a,b,c,若(b+c+a)(b+c-a)=3bc,则角A的大小为( )
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
9.某班主任对全班50名学生进行了作业量多少的调查,数据如下:
则认为喜欢玩手机与认为作业多少有关系的把握大约为95%.
附:x2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$
当x2≤2.706时,没有充分的证据判定变量A,B有关联,可以认为变量A,B是没有关联的;
当x2>2.706时,有90%的把握判定变量A,B有关联;
当x2>3.841时,有95%的把握判定变量A,B有关联;
当x2>6.635时,有99%的把握判定变量A,B有关联.
认为作业多 | 认为作业不多 | |
喜欢玩手机 | 18 | 9 |
不喜欢玩手机 | 7 | 16 |
附:x2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$
当x2≤2.706时,没有充分的证据判定变量A,B有关联,可以认为变量A,B是没有关联的;
当x2>2.706时,有90%的把握判定变量A,B有关联;
当x2>3.841时,有95%的把握判定变量A,B有关联;
当x2>6.635时,有99%的把握判定变量A,B有关联.
13.已知数列{an}的首项a1=1,an=an-1+3(n≥2,n∈N*),则a4=( )
A. | 10 | B. | 11 | C. | 9 | D. | 8 |