题目内容

4.将两颗骰子各掷一次,设事件A=“两个点数不相同”,B=“至少出现一个6点”,则概率P(A|B)等于(  )
A.$\frac{10}{11}$B.$\frac{5}{11}$C.$\frac{5}{18}$D.$\frac{5}{36}$

分析 根据条件概率的含义,P(A|B)其含义为在B发生的情况下,A发生的概率,即在“至少出现一个6点”的情况下,“两个点数都不相同”的概率,分别求得“至少出现一个6点”与“两个点数都不相同”的情况数目,进而相比可得答案.

解答 解:根据条件概率的含义,P(A|B)其含义为在B发生的情况下,A发生的概率,
即在“至少出现一个6点”的情况下,“两个点数都不相同”的概率,
“至少出现一个6点”的情况数目为6×6-5×5=11,
“两个点数都不相同”则只有一个6点,共C21×5=10种,
故P(A|B)=$\frac{10}{11}$.
故选:A.

点评 本题考查条件概率,注意此类概率计算与其他的不同,P(A|B)其含义为在B发生的情况下,A发生的概率.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网