题目内容
【题目】在直角坐标系xOy中,曲线C的参数方程为,在以O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为.
(1)设曲线C与直线l的交点为A、B,求弦AB的中点P的直角坐标;
(2)动点Q在曲线C上,在(1)的条件下,试求△OPQ面积的最大值.
【答案】(1);(2)
【解析】
(1)先把曲线和直线化成普通方程,再联立根据韦达定理和中点公式可得的坐标;
(2)先求出OP的长度和直线OP的方程,根据曲线的参数方程设出的坐标,求出到直线OP的距离得最大值,再求出面积.
由消去参数,得,
由得,得,
联立消去并整理得,
设,,,,
则,,
,.
(2)|OP|==,
所以直线OP的方程为x+4y=0,
设Q(2cosα,sinα),
则点Q到直线x+4y=0的距离d=≤=,
=|OP|d≤××=.
【题目】已知鲜切花的质量等级按照花枝长度进行划分,划分标准如下表所示.
花枝长度 | |||
鲜花等级 | 三级 | 二级 | 一级 |
某鲜切花加工企业分别从甲乙两个种植基地购进鲜切花,现从两个种植基地购进的鲜切花中分别随机抽取30个样品,测量花枝长度并进行等级评定,所抽取样品数据如图所示.
(1)根据茎叶图比较两个种植基地鲜切花的花枝长度的平均值及分散程度(不要求计算具体值,给出结论即可);
(2)若从等级为三级的样品中随机选取2个进行新产品试加工,求选取的2个全部来自乙种植基地的概率;
(3)根据该加工企业的加工和销售记录,了解到来自乙种植基地的鲜切花的加工产品的单件利润为4元;来自乙种植基地的鲜切花的加工产品的单件成本为10元,销售率(某等级产品的销量与产量的比值)及单价如下表所示.
三级花加工产品 | 二级花加工产品 | 一级花加工产品 | |
销售率 | |||
单价/(元/件) | 12 | 16 | 20 |
由于鲜切花加工产品的保鲜特点,未售出的产品均可按原售价的50%处理完毕.用样本估计总体,如果仅从单件产品的利润的角度考虑,该鲜切花加工企业应该从哪个种植基地购进鲜切花?