题目内容
11.从所有的三位正整数中任取一个数,则以2为底数该正整数的对数也是正整数的概率为$\frac{1}{300}$.分析 由题意可得三位正整数的个数有900个,若使得log2n为正整数,则需使n为2k的形式,且是三位正整数,求出个数,然后代入古典概率的计算公式可求.
解答 解:∵26=64,27=128,28=256,29=512,210=1024,
∴满足条件的正整数只有27,28,29三个,
∴所求的概率P=$\frac{3}{900}$=$\frac{1}{300}$;
故答案为:$\frac{1}{300}$.
点评 本题是一个古典概率的基础试题,关键是要求出基本事件即三位正整数的个数及满足题中指定事件的个数,从而代入公式可求.
练习册系列答案
相关题目
1.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是( )
A. | a<b | B. | a≤b | C. | a>b | D. | a≥b |
3.定义一种运算a?b=$\left\{\begin{array}{l}a,({a≤b})\\ b,({a>b})\end{array}$,令f(x)=(cos2x+sinx)?$\frac{3}{2}$,且x∈[-$\frac{π}{2},\frac{π}{2}}$],则函数f(x-$\frac{π}{2}}$)的最大值是( )
A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{5}{4}$ | D. | 1 |