题目内容
在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)求证:平面AED⊥平面A1FD1;
(2)在AE上求一点M,使得A1M⊥平面ADE.
(1)求证:平面AED⊥平面A1FD1;
(2)在AE上求一点M,使得A1M⊥平面ADE.
(1)证明略 (2) 当=时,A1M⊥平面ADE
建立如图所示的空间直角坐标系D—xyz,
不妨设正方体的棱长为2,
则A(2,0,0),E(2,2,1),
F(0,1,0),A1(2,0,2),D1(0,0,2),
设平面AED的法向量为n1=(x1,y1,z1),
则n1·=(x1,y1,z1)·(2,0,0)=0,
n1·=(x1,y1,z1)·(2,2,1)=0,
∴2x1=0,2x1+2y1+z1=0.
令y1=1,得n1=(0,1,-2),
同理可得平面A1FD1的法向量n2=(0,2,1).
∵n1·n2=0,∴n1⊥n2,
∴平面AED⊥平面A1FD1.
(2)解 由于点M在直线AE上,
设==(0,2,1)=(0,2,).
可得M(2,2,),∴=(0,2,-2),
∵AD⊥A1M,∴要使A1M⊥平面ADE,
只需A1M⊥AE,
∴·=(0,2,-2)·(0,2,1)=5-2=0,
解得=.
故当=时,A1M⊥平面ADE.
不妨设正方体的棱长为2,
则A(2,0,0),E(2,2,1),
F(0,1,0),A1(2,0,2),D1(0,0,2),
设平面AED的法向量为n1=(x1,y1,z1),
则n1·=(x1,y1,z1)·(2,0,0)=0,
n1·=(x1,y1,z1)·(2,2,1)=0,
∴2x1=0,2x1+2y1+z1=0.
令y1=1,得n1=(0,1,-2),
同理可得平面A1FD1的法向量n2=(0,2,1).
∵n1·n2=0,∴n1⊥n2,
∴平面AED⊥平面A1FD1.
(2)解 由于点M在直线AE上,
设==(0,2,1)=(0,2,).
可得M(2,2,),∴=(0,2,-2),
∵AD⊥A1M,∴要使A1M⊥平面ADE,
只需A1M⊥AE,
∴·=(0,2,-2)·(0,2,1)=5-2=0,
解得=.
故当=时,A1M⊥平面ADE.
练习册系列答案
相关题目