题目内容
【题目】从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有 种取法.在这 种取法中,可以分成两类:一类是取出的m个球全部为白球,共有 种取法;另一类是取出的m个球有m﹣1个白球和1个黑球,共有 种取法.显然 ,即有等式: 成立.试根据上述思想化简下列式子: = .
【答案】Cn+km
【解析】解:在Cnm+Ck1Cnm﹣1+Ck2Cnm﹣2+…+CkkCnm﹣k中,
从第一项到最后一项分别表示:
从装有n个白球,k个黑球的袋子里,
取出m个球的所有情况取法总数的和,
故答案应为:从从装有n+k球中取出m个球的不同取法数Cn+km
故答案为:Cn+km.
从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有Cn+1m种取法.在这Cn+1m种取法中,可以分成两类:一类是取出的m个球全部为白球,另一类是,取出1个黑球,m﹣1个白球,则Cnm+Cnm﹣1=Cn+1m根据上述思想,在式子:Cnm+Ck1Cnm﹣1+Ck2Cnm﹣2+…+CkkCnm﹣k中,从第一项到最后一项分别表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况取法总数的和,故答案应为:从从装有n+k球中取出m个球的不同取法数,根据排列组合公式,易得答案.
【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另30人比较粗心.
(1)试根据上述数据完成2×2列联表;
数学成绩及格 | 数学成绩不及格 | 合计 | |
比较细心 | |||
比较粗心 | |||
合计 |
(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系. 参考数据:独立检验随机变量K2的临界值参考表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
【题目】下面是60名男生每分钟脉搏跳动次数的频率分布表.
分组 | 频数 | 频率 | |
[51.5,57.5) | 4 | 0.067 | 0.011 |
[57.5,63.5) | 6 | 0.1 | 0.017 |
[63.5,69.5) | 11 | 0.183 | 0.031 |
[69.5,75.5) | 20 | 0.333 | 0.056 |
[75.5,81.5) | 11 | 0.183 | 0.031 |
[81.5,87.5) | 5 | 0.083 | 0.014 |
[87.5,93.5] | 3 | 0.05 | 0.008 |
(1)作出其频率分布直方图;
(2)根据直方图的各组中值估计总体平均数;
(3)估计每分钟脉搏跳动次数的范围.