ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªF£¨1£¬0£©ÎªÒ»¶¨µã£¬P£¨0£¬b£©ÊÇyÖáÉϵÄÒ»¶¯µã£¬xÖáÉϵĵãMÂú×ã$\overrightarrow{PM}$•$\overrightarrow{PF}$=0£¬µãNÂú×ã2$\overrightarrow{PN}$+$\overrightarrow{NM}$=$\vec 0$£®£¨¢ñ£©ÇóµãNµÄ¹ì¼£ÇúÏßCµÄ·½³Ì£»
£¨¢ò£©¹ýÖ±Ïßl£º2x-y+1=0µÄµãQ×÷ÇúÏßCµÄÇÐÏßQA£¬QB£¬Çеã·Ö±ðΪA£¬B£¬ÇóÖ¤£ºµ±µãQÔÚÖ±ÏßlÉÏÔ˶¯Ê±£¬Ö±ÏßABºã¹ý¶¨µãS£®
·ÖÎö £¨¢ñ£©ÉèM£¨a£¬0£©£¬ÇóµÃÏòÁ¿µÄ×ø±ê£¬ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾºÍÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬»¯¼òÕûÀí¼´¿ÉµÃµ½ËùÇó¹ì¼£·½³Ì£»
£¨¢ò£©ÇóµÃÇúÏßÉÏ·ÇÔµãÍâÇÐÏßµÄбÂÊ£¬ÒÔ¼°ÇÐÏß·½³Ì£¬ÇóµÃÇеãÏÒABµÄ·½³Ì£¬½áºÏQÔÚÖ±ÏßlÉÏ£¬¿ÉµÃ¶¨µãSµÄ×ø±ê£»ÔÙÓÉÔµã×÷ÇÐÏßQA£¬QB£¬ÇóµÃABµÄ·½³Ì£¬¼´¿ÉÅж϶¨µãSµÄ×ø±ê£®
½â´ð ½â£º£¨¢ñ£©ÉèM£¨a£¬0£©£¬Ôò$\overrightarrow{PM}$=£¨a£¬-b£©£¬$\overrightarrow{PF}$=£¨1£¬-b£©£¬
ÓÉ$\overrightarrow{PM}$•$\overrightarrow{PF}$=0¿ÉµÃa+b2=0£¬
ÉèN£¨x£¬y£©£¬ÓɵãNÂú×ã2$\overrightarrow{PN}$+$\overrightarrow{NM}$=$\vec 0$£®¼´$\overrightarrow{PN}$+$\overrightarrow{PM}$=$\overrightarrow{0}$£¬
Ôòa+x=0£¬y-2b=0£¬
¼´ÓÐÇúÏßCµÄ·½³ÌΪy2=4x£»
£¨¢ò£©Ö¤Ã÷£º£¨1£©y£¾0ʱ£¬y=2$\sqrt{x}$£¬y¡ä=$\frac{1}{\sqrt{x}}$=$\frac{2}{y}$£¬
y£¼0ʱ£¬y=-2$\sqrt{x}$£¬y¡ä=-$\frac{1}{\sqrt{x}}$=$\frac{2}{y}$£¬
ÔòÇúÏßCÉϳýÔµãÍâÈÎÒ»µã£¨x£¬y£©´¦µÄÇÐÏßµÄбÂʾùΪ$\frac{2}{y}$£¬
ÉèQ£¨x0£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬y1y2¡Ù0£¬
¿ÉµÃÇÐÏßQAµÄ·½³ÌΪ2x1-y1y+2x=0£¬
ÇÐÏßQBµÄ·½³ÌΪ2x2-y2y+2x=0£¬
´úÈëQ£¬¿ÉµÃ2x1-y1y0+2x0=0£¬ÇÒ2x2-y2y0+2x0=0£¬
¼´ÓÐABµÄ·½³ÌΪ2x-yy0+2x0=0£¬
ÓÖ2x0-y0+1=0£¬
¿ÉµÃ2x-1+y0£¨1-y£©=0£¬
Áî2x-1=0£¬ÇÒ1-y=0£¬½âµÃx=$\frac{1}{2}$£¬y=1£®
¼´ÓÐABºã¹ý¶¨µãS£¨$\frac{1}{2}$£¬1£©£»
£¨2£©ÈôÇеãAΪԵ㣬ÔòQ£¨0£¬1£©£¬
ÉèQB£ºy=kx+1ÓëÅ×ÎïÏßy2=4xÏàÇУ¬Ôòk=1£¬
ÇеãB£¨1£¬2£©£¬ABµÄ·½³ÌΪy=2x£¬Ò²¹ýµãS£¨$\frac{1}{2}$£¬1£©£¬
×ÛÉϿɵ㬵±µãQÔÚÖ±ÏßlÉÏÔ˶¯Ê±£¬Ö±ÏßABºã¹ý¶¨µãS£¨$\frac{1}{2}$£¬1£©£®
µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬Í¬Ê±¿¼²éÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾºÍÏòÁ¿µÄ¹²ÏßµÄ×ø±êÔËË㣬¿¼²éÖ±ÏߺÍÅ×ÎïÏßÏàÇеÄÇÐÏß·½³ÌºÍÇеãÏÒ·½³ÌµÄÇ󷨣¬ÒÔ¼°Ö±Ïߺã¹ý¶¨µãµÄÎÊÌ⣬ÊôÓÚÖеµÌ⣮
A£® | x2+y2-10x+10=0 | B£® | x2+y2-10x+15=0 | C£® | x2+y2+10x+15=0 | D£® | x2+y2+10x+10=0 |
A£® | $\sqrt{3}$+1 | B£® | $\sqrt{2}$+1 | C£® | $\sqrt{3}$ | D£® | 2 |