题目内容
【题目】已知幂函数y=f(x)的图象过点(8,m)和(9,3).
(Ⅰ)求m的值;
(Ⅱ)若函数g(x)=logaf(x)(a>0,a≠1)在区间[16,36]上的最大值比最小值大1,求实数a的值.
【答案】(Ⅰ)(Ⅱ)
【解析】试题分析:(Ⅰ)由题意y=f(x)是幂函数,设设f(x)=xα,图象过点(8,m)和(9,3)即可求解m的值.
(Ⅱ)函数g(x)=logaf(x)在区间[16,36]上的最大值比最小值大1,对底数进行讨论,利用单调性求最值,可得实数a的值.
试题解析: 解:(Ⅰ)由题意,y=f(x)是幂函数,设f(x)=xα,图象过点(8,m)和(9,3)
可得9α=3,所以α=,
故f(x)=.
∴m=f(8)=2.
故得m的值为2.
(Ⅱ)函数g(x)=logaf(x)即为g(x)=,
∵x在区间[16,36]上,
∴∈[4,6],
①当0<a<1时,g(x)min=loga6,g(x)max=loga4,
由loga4﹣loga6=loga=1,
解得a=;
②当a>1时,g(x)min=loga4,g(x)max=loga6,
由loga6﹣loga4=loga=1,
解得a=.
综上可得,实数a的值为或.
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图计算各小长方形的宽度;
(2)估计该公司投入4万元广告费之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值)
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
表格中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为 , .