题目内容
【题目】如图,已知⊙O中,直径AB垂直于弦CD,垂足为M,P是CD延长线上一点,PE切⊙O于点E,连接BE交CD于点F,证明:
(1)∠BFM=∠PEF;
(2)PF2=PD·PC.
【答案】(1)见解析(2)见解析
【解析】试题分析:(1)如图所示,连接OE.利用切线的性质可得:OE⊥PE,于是∠PEF+∠OEF=90°.由已知AB⊥CD,可得∠OBF+∠BFM=90°.由同圆的半径相等可得∠OBF=∠OEB.即可得出结论.
(2)利用(1)可得∠PEF=∠PFE.于是PE=PF.利用“切割线定理”可得PE2=PDPC.即可.
试题解析:
证明:(1)连接OE.
∵PE切⊙O于点E,
∴OE⊥PE.
∴∠PEF+∠FEO=90°.
又∵AB⊥CD,
∴∠B+∠BFM=90°.
又∵∠B=∠FEO,
∴∠BFM=∠PEF.
(2)∵∠EFP=∠BFM,
∴∠EFP=∠PEF.
∴PE=PF.
又∵PE2=PD·PC,
∴PF2=PD·PC.
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |