题目内容
【题目】关于函数,下列说法错误的是
A. 是的最小值点
B. 函数有且只有1个零点
C. 存在正实数,使得恒成立
D. 对任意两个不相等的正实数,若,则
【答案】C
【解析】,∴(0,2)上,函数单调递减,(2,+∞)上函数单调递增,
∴x=2是f(x)的极小值点,即A正确;
,∴,
函数在(0,+∞)上单调递减,x→0,y→+∞,
∴函数有且只有1个零点,即B正确;
,可得令则,
令,则,∴(0,1)上,函数单调递增,(1,+∞)上函数单调递减,
∴,
∴在(0,+∞)上函数单调递减,函数无最小值,
∴不存在正实数k,使得f(x)>kx恒成立,即C不正确;
对任意两个正实数,且,(0,2)上,函数单调递减,(2,+∞)上函数单调递增,若,则,正确。
故选:C.
练习册系列答案
相关题目
【题目】(本小题满分12分)某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.
等级 | 一等品 | 二等品 | 三等品 | 次品 |
| ||||
等级 | 一等品 | 二等品 | 三等品 | 次品 |
利润 |
|
表1 表2
若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为元.
(1) 设随机抽取1件产品的利润为随机变量 ,写出的分布列并求出的值;
(2) 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.