题目内容

已知双曲线的中心在原点,对称轴为坐标轴,其一条渐近线方程是,且双曲线过点.
(1)求此双曲线的方程;
(2)设直线过点,其方向向量为,令向量满足.双曲线的右支上是否存在唯一一点,使得. 若存在,求出对应的值和的坐标;若不存在,说明理由.
(1)
(2).

(1)设双曲线的方程为,将点代入可得
双曲线的方程为.
(2)依题意,直线的方程为 .设是双曲线右支上满足
 的点,结合,得
即点到直线的距离 
①若,则直线与双曲线的右支相交,此时双曲线的右支上有两个点到直线的距离为1,与题意矛盾;
②若,则直线在双曲线右支的上方,故,从而
. 又因为,所以
.
时,方程有唯一解,则
时,由,此时方程有唯一解,则
综上所述,符合条件的值有两个:,此时,此时.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网