题目内容
【题目】已知定义在R上的可导函数f (x)的导函数为,满足<f (x),且f (x+2)为偶函数,f (4)=1,则不等式f (x)<ex的解集为________.
【答案】
【解析】
令,利用导数和已知即可得出其单调性.再利用函数的奇偶性和已知可得g(0)=1,即可得出.
令,
则,
∵f′(x)<f(x),∴g′(x)<0.
∴g(x)在R上单调递减.
∵函数f(x+2)是偶函数,
∴函数f(﹣x+2)=f(x+2),
∴函数关于x=2对称,
∴f(0)=f(4)=1,
原不等式等价为g(x)<1,
∵g(0)1.
∴g(x)<1g(x)<g(0),
∵g(x)在R上单调递减,
∴x>0.
∴不等式f(x)<ex的解集为(0,+∞).
故答案为:(0,+∞).
练习册系列答案
相关题目
【题目】某商店为了解气温对某产品销售量的影响,随机记录了该商店月份中天的日销售量(单位:千克)与该地当日最低气温(单位:℃)的数据,如表所示:
(1)求与的回归方程:
(2)判断与之间是正相关还是负相关;若该地月份某天的最低气温为,请用(1)中的回归方程预测该商店当日的销售量.
参考公式:,.