题目内容
【题目】已知抛物线C1:x2=2py(p>0),点A(p, )到抛物线C1的准线的距离为2.
(1)求抛物线C1的方程;
(2)过点A作圆C2:x2+(y﹣a)2=1的两条切线,分别交抛物线于M,N两点,若直线MN的斜率为﹣1,求实数a的值.
【答案】
(1)解:由抛物线定义可得: ,∴p=2,
∴抛物线C1的方程为:x2=4y.
(2)解:设直线AM,AN的斜率分别为k1,k2,
将lAM:y﹣1=k1(x﹣2)代入x2=4y,得:
x2﹣4k1x+8k1﹣4=0, >0,
∴k1∈R,且k1≠1,
由韦达定理得:xM=4k1﹣2,同理xN=4k2﹣2,
∴ = (xM+xN)=k1+k2﹣1,
又∵直线lMN:y﹣1=k1(x﹣2)与圆相切,∴ ,
整理可得: ,
同理 ,
∴k1,k2是方程3k2+4k(a﹣1)+a2﹣2a=0的两个根,)
∴k1+k2=﹣ ,代入kMN=k1+k2﹣1=﹣1,
解得a=1.
【解析】(1)由抛物线定义得: ,由此能求出抛物线C1的方程.(2)设直线AM,AN的斜率分别为k1 , k2 , 将lAM:y﹣1=k1(x﹣2)代入x2=4y,得:x2﹣4k1x+8k1﹣4=0,由此利用根的判别式、韦达定理、直线与圆相切、点到直线距离公式,能求出结果.
【题目】某学校高中毕业班有男生900人,女生600人,学校为了对高三学生数学学习情况进行分析,从高三年级按照性别进行分层抽样,抽取200名学生成绩,统计数据如表所示:
分数段(分) | [50,70) | [70,90) | [90,110) | [110,130) | [130,150) | 总计 |
频数 | 20 | 40 | 70 | 50 | 20 | 200 |
(1)若成绩90分以上(含90分),则成绩为及格,请估计该校毕业班平均成绩及格学生人数;
(2)如果样本数据中,有60名女生数学成绩合格,请完成如下数学成绩与性别的列联表,并判断是否有90%的把握认为“该校学生的数学成绩与性别有关”.
女生 | 男生 | 总计 | |
及格人数 | 60 | ||
不及格人数 | |||
总计 |
参考公式:K2= .
P(K2≥k0) | 0.10 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |