题目内容
【题目】生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )
A. B. C. D.
【答案】C
【解析】
分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.
当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有
当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,
由间接法得到满足条件的情况有
共有:种情况,不考虑限制因素,总数有种,
故满足条件的事件的概率为:
故答案为:C.
【题目】自从新型冠状病毒爆发以来,全国范围内采取了积极的措施进行防控,并及时通报各项数据以便公众了解情况,做好防护.以下是湖南省2020年1月23日-31日这9天的新增确诊人数.
日期 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
时间 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
新增确诊人数 | 15 | 19 | 26 | 31 | 43 | 78 | 56 | 55 | 57 |
经过医学研究,发现新型冠状病毒极易传染,一个病毒的携带者在病情发作之前通常有长达14天的潜伏期,这个期间如果不采取防护措施,则感染者与一位健康者接触时间超过15秒,就有可能传染病毒.
(1)将1月23日作为第1天,连续9天的时间作为变量x,每天新增确诊人数作为变量y,通过回归分析,得到模型用于对疫情进行分析.对上表的数据作初步处理,得到下面的一些统计量的值(部分数据已作近似处理):,.根据相关数据,求该模型的回归方程(结果精确到0.1),并依据该模型预测第10天新增确诊人数.
(2)如果一位新型冠状病毒的感染者传染给他人的概率为0.3,在一次12人的家庭聚餐中,只有一位感染者参加了聚餐,记余下的人员中被感染的人数为,求最有可能(即概率最大)的值是多少.
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为.
【题目】
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为.
(Ⅰ)求乙投球的命中率;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.
【题目】某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
112 | 61 | 44.5 | 35 | 30.5 | 28 | 25 | 24 |
根据以上数据,绘制了散点图.
观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与的相关系数.
参考数据(其中):
183.4 | 0.34 | 0.115 | 1.53 | 360 | 22385.5 | 61.4 | 0.135 |
(1)用反比例函数模型求关于的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本;
(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选择100元还是90元,请说明理由.
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,,相关系数.