题目内容
2.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为$\frac{1}{20}$,则总体的个数为300.分析 根据抽样方法的特征是每个个体被抽到的概率相等,利用样本容量,求出总体是多少即可
解答 解:根据分层抽样的特征,每个个体被抽到的概率都相等,
所以总体中的个体的个数为15÷$\frac{1}{20}$=300.
故答案为:300.
点评 本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.
练习册系列答案
相关题目
10.若复数z=2-i ( i为虚数单位),则$\frac{10}{z}$=( )
A. | 4+2i | B. | 20+10i | C. | 4-2i | D. | $\frac{20}{3}+\frac{10}{3}i$ |
17.复数z=$\frac{m+i}{1+i}$(m∈R,i为虚数单位)在复平面上对应的点不可能位于( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
7.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如表:
(Ⅰ)请求出表中的x1,x2,x3的值,并写出函数f(x)的解析式;
(Ⅱ)将f(x)的图象向右平移$\frac{2}{3}$个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量$\overrightarrow{NM}$与$\overrightarrow{ON}$夹角θ的大小.
x | x1 | $\frac{1}{3}$ | x2 | $\frac{7}{3}$ | x3 |
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
Asin(ωx+φ)+B | 0 | $\sqrt{3}$ | 0 | -$\sqrt{3}$ | 0 |
(Ⅱ)将f(x)的图象向右平移$\frac{2}{3}$个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量$\overrightarrow{NM}$与$\overrightarrow{ON}$夹角θ的大小.
14.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为$\sqrt{3}$,则C的焦距等于( )
A. | 2 | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 4 |