题目内容
【题目】设点,分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为0.
(1)求椭圆的方程;
(2)如图,动直线与椭圆有且仅有一个公共点,点,是直线上的两点,且,,求四边形面积的最大值.
【答案】(1);(2)2.
【解析】
(1)利用的最小值为0,可得,,即可求椭圆的方程;
(2)将直线的方程代入椭圆的方程中,得到关于的一元二次方程,由直线与椭圆仅有一个公共点知,即可得到,的关系式,利用点到直线的距离公式即可得到,.当时,设直线的倾斜角为,则,即可得到四边形面积的表达式,利用基本不等式的性质,结合当时,四边形是矩形,即可得出的最大值.
(1)设,则,,
,,
由题意得,,
椭圆的方程为;
(2)将直线的方程代入椭圆的方程中,
得.
由直线与椭圆仅有一个公共点知,,
化简得:.
设,,
当时,设直线的倾斜角为,
则,
,
,
,
∴当时,,,
.
当时,四边形是矩形,.
所以四边形面积的最大值为2.
练习册系列答案
相关题目