题目内容

(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.
已知抛物线,F是焦点,直线l是经过点F的任意直线.
(1)若直线l与抛物线交于两点A、B,且(O是坐标原点,M是垂足),求动点M的轨迹方程;
(2)若C、D两点在抛物线上,且满足,求证直线CD必过定点,并求出定点的坐标.
所求动点M的轨迹方程是().
直线CD的方程可化为. 直线CD恒过定点,且定点坐标为(2,0).
(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.
解 (1) 设动点M的坐标为.                 …………………1分
∵抛物线的焦点是,直线l恒过点F,且与抛物线交于两点A、B,

.                    …………………3分
,化简,得.  …………………5分
又当M与原点重合时,直线l与x轴重合,故
∴所求动点M的轨迹方程是().
(2) 设点C、D的坐标为.      …………………………6分
∵C、D在抛物线上,
,即

.     ………8分
∵点C、D的坐标为
∴直线CD的一个法向量是,可得直线CD的方程为:
  ,化简,得
,进一步用,有

又抛物线上任两点的纵坐标都不相等,即
∴直线CD的方程可化为.    ………………………10分
∴直线CD恒过定点,且定点坐标为(2,0).     ………………………12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网