ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªf1£¨x£©=|3x-1|£¬f2£¨x£©=|a•3x-9|£¨a£¾0£©£¬x¡ÊR£®Éèf£¨x£©=$\left\{\begin{array}{l}{{f}_{1}£¨x£©\\;{f}_{1}£¨x£©¡Ü{f}_{2}£¨x£©}\\{{f}_{2}£¨x£©\\;{f}_{1}£¨x£©£¾{f}_{2}£¨x£©}\end{array}\right.$£®£¨1£©µ±a=1ʱ£¬½â²»µÈʽ£ºf1£¨x£©¡Üf2£¨x£©£»
£¨2£©µ±2¡Üa£¼9ʱ£¬Éèf£¨x£©=f2£¨x£©Ëù¶ÔÓ¦µÄ×Ô±äÁ¿È¡ÖµÇø¼äµÄ³¤¶ÈΪl£¨±ÕÇø¼ä[m£¬n]µÄ³¤¶È¶¨ÒåΪn-m£©£¬ÊÔÇólµÄ×î´óÖµ£»
£¨3£©ÊÇ·ñ´æÔÚÕâÑùµÄa£¬Ê¹µÃµ±x¡Ê[2£¬+¡Þ£©ÉÏ£¬f£¨x£©=f2£¨x£©£¿Èô´æÔÚ£¬Çó³öaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©µ±a=1ʱ£¬f2£¨x£©=|3x-9|£¬ÀûÓÃƽ·½·¨£¬¿É½«f1£¨x£©¡Üf2£¨x£©»¯Îª£¨3x-1£©2¡Ü£¨3x-9£©2£¬½âÖ¸Êý²»µÈʽ£¬µÃµ½´ð°¸£»
£¨2£©±¾ÎÊÖнè¼øÉÏÎÊ£¨1£©µÄ½âÌâ˼Ï룬ÓɾßÌåµ½Ò»°ã£¬·½·¨ÒÀÈ»ÊÇÕë¶ÔaµÄ·¶Î§Ìõ¼þ£¬×÷²î±È½Ï³öf1£¨x£©Óëf2£¨x£©µÄ´óС£¬ÔÚ2¡Üa£¼9ʱ£¬×Ô±äÁ¿xÈ¡ÄÄЩֵʱf£¨x£©=f2£¨x£©£¬½ø¶øÈ·¶¨Çó³öf£¨x£©µÄ½âÎöʽ£¬¶Ô²ÎÊýµÄÌÖÂÛÒª½áºÏ¾ßÌåµÄÊýÖµ£¬´ÓÖ±¹Ûµ½³éÏó²ÉÈ¡·ÖÀà²ßÂÔ£®
£¨3£©±¾ÎÊÀûÓã¨2£©µÄ½áÂÛÈÝÒ×Çó½â£¬ÐèҪעÒâµÄÊǵȼÛת»¯Ë¼ÏëµÄÓ¦Ó㬷ÖÀàÌÖÂÛ˼ÏëÖØÐÂÔÚ±¾ÎÊÖеÄÌåÏÖ£®
½â´ð ½â£º£¨1£©µ±a=1ʱ£¬f2£¨x£©=|3x-9|£®
Èôf1£¨x£©¡Üf2£¨x£©£¬
Ôò|3x-1|¡Ü|3x-9|£¬
¼´£¨3x-1£©2¡Ü£¨3x-9£©2£¬
¼´3x¡Ü5£¬
½âµÃ£ºx¡Ülog35£¨5·Ö£©
£¨2£©ÒòΪ2¡Üa£¼9£¬ËùÒÔ0£¼log3$\frac{9}{a}$¡Ülog3$\frac{9}{2}$£¬Ôò
¢Ùµ±x¡Ýlog3$\frac{9}{a}$ʱ£¬
ÒòΪa•3x-9¡Ý0£¬3x-1£¾0£¬
ËùÒÔÓÉf2£¨x£©-f1£¨x£©=£¨a•3x-9£©-£¨3x-1£©=£¨a-1£©3x-8¡Ü0£¬
½âµÃx¡Ülog3$\frac{8}{a-1}$£¬
´Ó¶øµ±log3$\frac{9}{a}$¡Üx¡Ülog3$\frac{8}{a-1}$ʱ£¬f£¨x£©=f2£¨x£©£¨6·Ö£©
¢Úµ±0¡Üx£¼log3$\frac{9}{a}$ʱ£¬
ÒòΪa•3x-9£¼0£¬3x-1¡Ý0£¬
ËùÒÔÓÉf2£¨x£©-f1£¨x£©=£¨9-a•3x£©-£¨3x-1£©=10-£¨a+1£©3x¡Ü0£¬
½âµÃx¡Ýlog3$\frac{10}{a+1}$£¬
´Ó¶øµ±log3$\frac{10}{a+1}$¡Üx£¼log3$\frac{9}{a}$ʱ£¬f£¨x£©=f2£¨x£©£¨7·Ö£©
¢Ûµ±x£¼0ʱ£¬
ÒòΪf2£¨x£©-f1£¨x£©=£¨9-a•3x£©-£¨1-3x£©=8-£¨a-1£©3x£¾0£¬
´Ó¶øf£¨x£©=f2£¨x£©Ò»¶¨²»³ÉÁ¢£¨8·Ö£©
×ÛÉϵ㬵±ÇÒ½öµ±x¡Ê[log3$\frac{10}{a+1}$£¬log3$\frac{8}{a-1}$]ʱ£¬f£¨x£©=f2£¨x£©£¬
¹Êl=log3$\frac{8}{a-1}$-log3$\frac{10}{a+1}$=log3[$\frac{4}{5}$£¨1+$\frac{2}{a-1}$£©]£¨9·Ö£©
´Ó¶øµ±a=2ʱ£¬lÈ¡µÃ×î´óֵΪlog3$\frac{12}{5}$£¨10·Ö£©
£¨2£©¡°µ±x¡Ê[2£¬+¡Þ£©Ê±£¬f£¨x£©=f2£¨x£©¡±µÈ¼ÛÓÚ¡°f2£¨x£©¡Üf1£¨x£©¶Ôx¡Ê[2£¬+¡Þ£©ºã³ÉÁ¢¡±£¬
¼´¡°|a•3x-9|¡Ü|3x-1|=3x-1£¨*£©¶Ôx¡Ê[2£¬+¡Þ£©ºã³ÉÁ¢¡±£¨11·Ö£©
¢Ùµ±a¡Ý1ʱ£¬log3$\frac{9}{a}$¡Ü2£¬
Ôòµ±x¡Ý2ʱ£¬a•3x-9¡Ýa•3log3$\frac{9}{a}$-9=0£¬
Ôò£¨*£©¿É»¯Îªa•3x-9¡Ü3x-1£¬¼´a¡Ü1+$\frac{8}{3x}$£¬
¶øµ±x¡Ý2ʱ£¬1+$\frac{8}{3x}$£¾1£¬
ËùÒÔa¡Ü1£¬´Ó¶øa=1ÊʺÏÌâÒ⣨12·Ö£©
¢Úµ±0£¼a£¼1ʱ£¬log3$\frac{9}{a}$£¾2£®
£¨1£©µ±x£¾log3$\frac{9}{a}$ʱ£¬£¨*£©¿É»¯Îªa•3x-9¡Ü3x-1£¬¼´a¡Ü1+$\frac{8}{3x}$£¬¶ø1+$\frac{8}{3x}$£¾1£¬
ËùÒÔa¡Ü1£¬´ËʱҪÇó0£¼a£¼1£¨£¨13·Ö£©
£¨2£©µ±x=log3$\frac{9}{a}$ʱ£¬£¨*£©¿É»¯Îª0¡Ü3x-1=$\frac{9}{a}$-1£¬
´ËʱֻҪÇó0£¼a£¼9£¨14·Ö£©
£¨3£©µ±2¡Üx£¼log3$\frac{9}{a}$ʱ£¬£¨*£©¿É»¯Îª9-a•3x¡Ü3x-1£¬¼´a¡Ý$\frac{10}{3x}$-1£¬¶ø$\frac{10}{3x}$-1¡Ü$\frac{1}{9}$£¬
ËùÒÔa¡Ý$\frac{1}{9}$£¬´ËʱҪÇó$\frac{1}{9}$¡Üa£¼1£¨15·Ö£©
ÓÉ£¨1£©£¨2£©£¨3£©£¬µÃ$\frac{1}{9}$¡Üa£¼1·ûºÏÌâÒâÒªÇó£®
×ۺϢ٢ÚÖª£¬Âú×ãÌâÒâµÄa´æÔÚ£¬ÇÒaµÄÈ¡Öµ·¶Î§ÊÇ$\frac{1}{9}$¡Üa¡Ü1£¨16·Ö£©
µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÓйظÅÄº¯ÊýÇóÖµµÄÎÊÌ⣻¶Ôº¯ÊýµÄµ¼ÊýµÄ¸ÅÄîÒàÓÐËù¿¼²é£¬º¬²ÎÊýµÄÊýѧÎÊÌâµÄÌÖÂÛ£¬×¢ÖضԷÖÀàÌÖÂÛ˼Ï룬ÊýÐνáºÏ˼ÏëµÄ¿¼²é£¬¿¼²éÁ˶ԽüÄêÀ´¸ß¿¼ÕæÌâÖгöÏÖµÄÓйغã³ÉÁ¢ÎÊÌ⣬´æÔÚÐÔÎÊÌâµÄÇó½â²ßÂÔ£¬¶Ôº¯Êý֪ʶµÄ×ÛºÏÐÔ½âÌâÄÜÁ¦ÓкܸߵÄÒªÇó£¬ÊôÓÚѹÖáÌâµÄÌâÄ¿ÄѶȣ®±¾ÌâµÄÇó½â²ßÂÔÊÇϸ¶ÁÌâÒ⣬¾«È··ÖÎö²ÉÈ¡ÓÐÄѵ½Ò×£¬¸÷µã»÷ÆƵÄ˼Ï룬ͬʱעÒâ½âÌâ˼ÏëµÄÓ¦Óã®
A£® | [0£¬$\frac{4}{3}$] | B£® | [$\frac{1}{2}$£¬2£© | C£® | [$\frac{1}{2}$£¬$\frac{4}{3}$] | D£® | [$\frac{1}{2}$£¬+¡Þ£© |