题目内容

6.求证:$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$<$\frac{9}{8}$.

分析 类似于数学归纳法,当n=2时显然成立,假设n=k(k≥3,k∈N*)时命题成立,通过当n=k+1时放缩即得结论.

解答 证明:①当n=2时,显然成立;
②假设n=k(k≥3,k∈N*)时命题成立,即$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{3k+1}$<$\frac{9}{8}$成立,
则当n=k+1时,
左边=$\frac{1}{(k+1)+1}$+$\frac{1}{(k+1)+2}$+…+$\frac{1}{3k+1}$+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3(k+1)+1}$
=$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{3k+1}$+[$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3(k+1)+1}$-$\frac{1}{k+1}$]
<$\frac{9}{8}$+[$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3(k+1)+1}$-$\frac{1}{k+1}$]
<$\frac{9}{8}$+$\frac{-6k+2}{(3k+2)(3k+3)(3k+4)}$
<$\frac{9}{8}$,
即当n=k+1时,命题也成立;
由①②可知:$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$<$\frac{9}{8}$.

点评 本题考查不等式的证明,利用放缩法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网