题目内容
20.3${\;}^{\frac{1}{3}}$+$\frac{i}{({3}^{\frac{1}{3}}-i)^{3}}$=$\frac{10+10•{3}^{\frac{1}{3}}+6•{3}^{\frac{2}{3}}}{10+9•{3}^{\frac{1}{3}}+3•{3}^{\frac{2}{3}}}$$+\frac{3-3•{3}^{\frac{1}{3}}}{10+9•{3}^{\frac{1}{3}}+3•{3}^{\frac{2}{3}}}i$.分析 直接利用复数代数形式的乘除运算化简求值.
解答 解:3${\;}^{\frac{1}{3}}$+$\frac{i}{({3}^{\frac{1}{3}}-i)^{3}}$=${3}^{\frac{1}{3}}+\frac{i}{3-{3}^{\frac{4}{3}}-({3}^{\frac{5}{3}}-1)i}$
=${3}^{\frac{1}{3}}+\frac{i[(3-{3}^{\frac{4}{3}})+({3}^{\frac{5}{3}}-1)i]}{[(3-{3}^{\frac{4}{3}})-({3}^{\frac{5}{3}}-1)i][(3-{3}^{\frac{4}{3}})+({3}^{\frac{5}{3}}-1)i]}$
=${3}^{\frac{1}{3}}+\frac{(1-{3}^{\frac{5}{3}})+(3-{3}^{\frac{4}{3}})i}{(3-{3}^{\frac{4}{3}})^{2}+({3}^{\frac{5}{3}}-1)^{2}}$
=${3}^{\frac{1}{3}}+\frac{(1-3•{3}^{\frac{2}{3}})+3(1-{3}^{\frac{1}{3}})i}{10+9•{3}^{\frac{1}{3}}+3•{3}^{\frac{2}{3}}}$
=$\frac{10+10•{3}^{\frac{1}{3}}+6•{3}^{\frac{2}{3}}}{10+9•{3}^{\frac{1}{3}}+3•{3}^{\frac{2}{3}}}$$+\frac{3-3•{3}^{\frac{1}{3}}}{10+9•{3}^{\frac{1}{3}}+3•{3}^{\frac{2}{3}}}i$.
故答案为:$\frac{10+10•{3}^{\frac{1}{3}}+6•{3}^{\frac{2}{3}}}{10+9•{3}^{\frac{1}{3}}+3•{3}^{\frac{2}{3}}}$$+\frac{3-3•{3}^{\frac{1}{3}}}{10+9•{3}^{\frac{1}{3}}+3•{3}^{\frac{2}{3}}}i$.
点评 本题考查了复数代数形式的乘除运算,考查了计算能力,是基础题.
A. | 奇函数 | B. | 偶函数 | ||
C. | 既是奇函数,又是偶函数 | D. | 既非奇函数,又非偶函数 |