题目内容
9.如图,过圆外一点P作直线AB的垂线,垂足为F,交圆于C,E两点,PD切圆于D,连接AD交EP于G.(1)求证:PD=PG;
(2)若AC=BD,求证:AB=ED.
分析 (1)证明PG=PD,只需证明∠PDG=∠PGD;
(2)证明Rt△BDA≌Rt△ACB,再证明∠DCE为直角,即可证明AB=ED.
解答 证明:(1)∵PD为切线,∴∠PDA=∠DBA,
∵AB为圆的直径,
∴∠BDA=90°,
∵AF⊥EP,
∴∠PFA=90°.
∴∠DBA=∠EGA,
∵∠PGD=∠EGA,
∴∠PDG=∠PGD,
∴PG=PD;
(2)连接BC,DC,则
∵AB为圆的直径,
∴∠BDA=∠ACB=90°,
在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,
∴Rt△BDA≌Rt△ACB,
∴∠DAB=∠CBA,
∵∠DCB=∠DAB,
∴∠DCB=∠CBA,
∴DC∥AB,
∵AB⊥EP,
∴DC⊥EP,
∴∠DCE为直角,
∴ED为圆的直径,
∵AB为圆的直径,
∴AB=ED.
点评 本题考查圆的切线的性质,考查三角形全等的证明,考查直径所对的圆周角为直角,属于中档题.
练习册系列答案
相关题目
17.如图,在长方体ABCD-A1B1C1D1中,AA1=1,AB=BC=2,若M为四面体C1BCD内的点(包含边界),则直线A1M与平面A1B1C1D1所成角的余弦值的余弦的最小值为( )
A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{2\sqrt{2}}{3}$ |