题目内容

9.如图,过圆外一点P作直线AB的垂线,垂足为F,交圆于C,E两点,PD切圆于D,连接AD交EP于G.
(1)求证:PD=PG;
(2)若AC=BD,求证:AB=ED.

分析 (1)证明PG=PD,只需证明∠PDG=∠PGD;
(2)证明Rt△BDA≌Rt△ACB,再证明∠DCE为直角,即可证明AB=ED.

解答 证明:(1)∵PD为切线,∴∠PDA=∠DBA,
∵AB为圆的直径,
∴∠BDA=90°,
∵AF⊥EP,
∴∠PFA=90°.
∴∠DBA=∠EGA,
∵∠PGD=∠EGA,
∴∠PDG=∠PGD,
∴PG=PD;
(2)连接BC,DC,则
∵AB为圆的直径,
∴∠BDA=∠ACB=90°,
在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,
∴Rt△BDA≌Rt△ACB,
∴∠DAB=∠CBA,
∵∠DCB=∠DAB,
∴∠DCB=∠CBA,
∴DC∥AB,
∵AB⊥EP,
∴DC⊥EP,
∴∠DCE为直角,
∴ED为圆的直径,
∵AB为圆的直径,
∴AB=ED.

点评 本题考查圆的切线的性质,考查三角形全等的证明,考查直径所对的圆周角为直角,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网