题目内容
【题目】已知集合.
(1)证明:若,则,;
(2)证明:若,则,并由此证明中的元素若满足,则;
(3)设,试求满足的所有的可能值.
【答案】(1)证明见解析 (2)证明见解析 (3)c=7+4
【解析】
(1)若,则且,, ,得到 , 均满足集合的性质,进而得到结论.
(2)构造函数,分析其单调性,进而得到中元素若满足,则.
(3)设,结合(1)(2)中的结论,可得值.
证明:(1)若a∈A,则a=m+n且m2﹣3n2=1,m,n∈Z,
则m+(﹣n)且m2﹣3(﹣n)2=1,m,﹣n∈Z,
故∈A,
则(m+n)=(2m﹣3n)+(2n﹣m),
此时(2m﹣3n)2﹣3
故∈A;
(2)令f(x)=x(x≥1),则在上的单调递增,
证明:设,
则
∵ ,
∴,,
故,即,在上的单调递增
∵1<p≤q,f(1)=2
∴2;
令b=m+n且m2﹣3n2=1,m,n∈Z,
∵1,
∴2<b,
∴2<2m≤4,
则m=2,n=1,则b=2;
(3)∵c∈A,且2c≤(2)2,
∴∈A,且12,
由(2)得:2,
∴c=(2)2=7+4
练习册系列答案
相关题目