题目内容
【题目】已知函数.
(1)若为单调函数,求a的取值范围;
(2)若函数仅一个零点,求a的取值范围.
【答案】(1)(2)或
【解析】
(1)对求导得,因为为单调函数,故或恒成立,利用导数研究或哪个能成立即可;
(2)因为,所以是的一个零点,由(1)可知,当时,为上的增函数,所以仅有一个零点,满足题意,当时,得,分,,讨论验证即可.
解析:(1)由(),得
,
因为为单调函数,
所以当时,或恒成立,
由于,于是只需或对于恒成立,
令,则,
当时,,所以为增函数,
则.又当时,,
则不可能恒成立,即不可能为单调减函数.
当,即时,恒成立,
此时函数为单调递增函数.
(2)因为,所以是的一个零点.
由(1)知,当时,为的增函数,
此时关于x的方程仅一解,即函数仅一个零点,满足条件.
当时,由得,
(ⅰ)当时,,
则,
令,
易知为的增函数,且,
所以当时,,即,为减函数,
当时,,即,为增函数,
所以,
在上恒成立,且仅当,于是函数仅一个零点.
所以满足条件.
(ⅱ)当时,由于在为增函数,
则,当时,.
则存在,使得,即使得,
当时,,
当时,,
所以,且当时,.
于是当时存在的另一解,不符合题意,舍去.
(ⅲ)当时,则在为增函数,
又,,
所以存在,使得,也就使得,
当时,,
当时,,
所以,且当时,.
于是在时存在的另一解,不符合题意,舍去.
综上,a的取值范围为或.
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在,实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.
(Ⅰ)求图中的值;
(Ⅱ)用样本估计总体,以频率作为概率,若在,两块试验地随机抽取3棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
(Ⅲ)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | <>0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)