题目内容

【题目】某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

参加书法社团

未参加书法社团

参加演讲社团

8

5

未参加演讲社团

2

30


(1)从该班随机选1名同学,求该同学至少参加一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1 , A2 , A3 , A4 , A5 , 3名女同学B1 , B2 , B3 . 现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.

【答案】
(1)解:设“至少参加一个社团”为事件A;

从45名同学中任选一名有45种选法,∴基本事件数为45;

通过列表可知事件A的基本事件数为8+2+5=15;

这是一个古典概型,∴P(A)=


(2)解:从5名男同学中任选一个有5种选法,从3名女同学中任选一名有3种选法;

∴从这5名男同学和3名女同学中各随机选1人的选法有5×3=15,即基本事件总数为15;

设“A1被选中,而B1未被选中”为事件B,显然事件B包含的基本事件数为2;

这是一个古典概型,∴


【解析】(1)先判断出这是一个古典概型,所以求出基本事件总数,“至少参加一个社团”事件包含的基本事件个数,从而根据古典概型的概率计算公式计算即可;(2)先求基本事件总数,即从这5名男同学和3名女同学中各随机选1人,有多少中选法,这个可利用分步计数原理求解,再求出“A1被选中,而B1未被选中”事件包含的基本事件个数,这个容易求解,然后根据古典概型的概率公式计算即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网