题目内容
11.二面角α-l-β的半平面α内有一条直线a与棱l成45°角,若二面角的大小也为45°,则直线a与平面β所成角的大小为30°.分析 先根据题意画出相应的图形,然后找出AB与面β的所成角,在直角三角形ABD中进行求解即可.
解答 解:根据题意先画出图形作AD⊥β交面β于D
由题意可知∠ABC=45°,∠ACD=45°
设AD=1,则CD=1,AC=$\sqrt{2}$,BC=$\sqrt{2}$,AB=2
而AD=1,三角形ABD为直角三角形
∴∠ABD=30°
故答案为:30°.
点评 本题主要考查了直线与平面所成角的度量,解题的关键是通过题意画出相应的图象,属于中档题.
练习册系列答案
相关题目
19.设F1、F2是双曲线$\frac{{x}^{2}}{4a}$-$\frac{{y}^{2}}{a}$=1(a>0)的两个焦点,点P在双曲线上,且$\overrightarrow{PF1}$•$\overrightarrow{PF2}$=0,|$\overrightarrow{PF1}$|•|$\overrightarrow{PF2}$|=2,则a的值等于( )
A. | 2 | B. | 1 | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
6.若a>b>0,则下列不等式成立的是( )
A. | a>b>$\frac{a+b}{2}$>$\sqrt{ab}$ | B. | a>$\frac{a+b}{2}$>$\sqrt{ab}$>b | C. | a>$\frac{a+b}{2}$>b>$\sqrt{ab}$ | D. | a>$\frac{a+b}{2}$≥$\sqrt{ab}$>b |
16.直线x+2y+1=0被圆(x-2)2+(y-1)2=25所截得的弦长为( )
A. | 5$\sqrt{5}$ | B. | 4$\sqrt{5}$ | C. | 3$\sqrt{5}$ | D. | $2\sqrt{5}$ |
20.如图所示,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=30°以及∠MAC=105°;从C点测得∠MCA=45°.已知山高BC=150米,则所求山高MN为( )米.
A. | 300$\sqrt{3}$ | B. | 150$\sqrt{6}$ | C. | 150$\sqrt{3}$ | D. | 300$\sqrt{6}$ |