题目内容
【题目】选修4—4:坐标系与参数方程
已知曲线的参数方程是 (是参数, ),直线的参数方程是 (是参数),曲线与直线有一个公共点在轴上,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系
(1)求曲线的极坐标方程;
(2)若点,,在曲线上,求的值.
【答案】(1) (2)
【解析】
(1)消去直线l的参数t得普通方程,令y=0,得x的值,即求得直线与x轴的交点;消去曲线C的参数即得C的普通方程,再把上面求得的点代入此方程即可求出a的值;
(2)把点A、B、C的极坐标化为直角坐标,代入曲线C的方程,可得,即,同理得出其它,代入即可得出答案.
(Ⅰ)∵直线l的参数方程是(t为参数),消去参数t得x+y=2,令y=0,得x=2.
∵曲线C的参数方程是(为参数,a>0),消去参数得,
把点(2,0)代入上述方程得a=2.
∴曲线C普通方程为.
(Ⅱ)∵点在曲线C上,即A(ρ1cosθ,ρ1sinθ),,在曲线C上,
∴
=
=
=.
练习册系列答案
相关题目
【题目】某科研小组对冬季昼夜温差大小与某反季节作物种子发芽多少之间的关系进行分析,分别记录了每天昼夜温差和每100颗种子的发芽数,其中5天的数据如下,该小组的研究方案是:先从这5组数据中选取3组求线性回归方程,再用方程对其余的2组数据进行检验.
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
温度(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 26 | 32 | 26 | 16 |
(1)求余下的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是第2、3、4天的数据,求关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与2组检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,请问(2)中所得的线性回归方程是否可靠?
(参考公式;线性回归方程中系数计算公式:,,其中、表示样本的平均值)