题目内容

【题目】在△ABC中,a,b,c分别为角A,B,C所对的边,角C是钝角,且sinB= . (Ⅰ)求角C的值;
(Ⅱ)若b=2,△ABC的面积为 ,求c的值.

【答案】解:(Ⅰ)由sinB= 得2csinB=b,由正弦定理得:2sinCsinB=sinB, 所以sinB(2sinC﹣1)=0,
因为sinB≠0,
所以sinC=
因为C是钝角,
所以C=
(Ⅱ)因为S= absinC= a= ,a=2
由余弦定理得c2=a2+b2﹣2abcosC=12+4﹣2× (﹣ )=28,
所以c=2 ,即c的值为2
【解析】(Ⅰ)由正弦定理化简已知可得sinB(2sinC﹣1)=0,由sinB≠0解得sinC= ,结合C是钝角,即可解得C的值.(Ⅱ)由已知及三角形面积公式可求a的值,由余弦定理即可解得c的值.
【考点精析】掌握正弦定理的定义和余弦定理的定义是解答本题的根本,需要知道正弦定理:;余弦定理:;;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网