题目内容
已知函数(Ⅰ)若在处取得极值,求的值;(Ⅱ)讨论的单调性;(Ⅲ)证明:为自然对数的底数)
(1)=0符合条件(2)若.(3)见解析。
解析
(本小题满分12分)设函数,曲线过点,且在点处的切线斜率为2.(1)求的值;(2)证明:
已知,函数.(1)求的极值;(2)若在上为单调递增函数,求的取值范围;(3)设,若在(是自然对数的底数)上至少存在一个,使得成立,求的取值范围。
(本小题满分13分)已知,,,…,.(Ⅰ)请写出的表达式(不需证明);(Ⅱ)求的极小值;(Ⅲ)设,的最大值为,的最小值为,试求的最小值.
已知函数f(x)=ln x-. (1)若a>0,试判断f(x)在定义域内的单调性;(2)若f(x)在[1,e]上的最小值为,求a的值;(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.
设函数(Ⅰ) 当时,求函数的极值;(Ⅱ)当时,讨论函数的单调性. (Ⅲ)(理科)若对任意及任意,恒有 成立,求实数的取值范围.
(本小题满分16分)已知(I)如果函数的单调递减区间为,求函数的解析式;(II)在(Ⅰ)的条件下,求函数的图像在点处的切线方程;(III)若不等式恒成立,求实数的取值范围.
(本小题满分15分)已知函数(Ⅰ)求的值;(Ⅱ)若曲线过原点的切线与函数的图像有两个交点,试求b的取值范围.
(本小题满分10分)函数在P点处的切线平行于直线,求的值。