题目内容
19.已知数列{an}满足:a1=1,2an+1an+3an+1+an+2=0.求证:{$\frac{1}{{a}_{n}+1}$}是等差数列.分析 根据等差数列的定义进行整理证明即可.
解答 证明:∵2an+1an+3an+1+an+2=0.
∴2an+1an=-3an+1-an-2.
则$\frac{1}{{a}_{n+1}+1}$-$\frac{1}{{a}_{n}+1}$=$\frac{{a}_{n}+1-{a}_{n+1}-1}{({a}_{n+1}+1)({a}_{n}+1)}$=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n+1}{a}_{n}+{a}_{n}+{a}_{n+1}+1}$=$\frac{2({a}_{n}-{a}_{n+1})}{2{a}_{n+1}{a}_{n}+2{a}_{n}+2{a}_{n+1}+2}$
=$\frac{2({a}_{n}-{a}_{n+1})}{-3{a}_{n+1}-{a}_{n}-2+2{a}_{n}+2{a}_{n+1}+2}$=$\frac{2({a}_{n}-{a}_{n+1})}{{a}_{n}-{a}_{n+1}}=2$为常数,
故:{$\frac{1}{{a}_{n}+1}$}是公差d=2的等差数列.
点评 本题主要考查等差数列的判断,根据数列的递推关系是解决本题的关键.
练习册系列答案
相关题目
14.若0<a<1,在[0,2π]上满足cosx≤-a的x的范围是( )
A. | [arc cosa,π+arc cosa] | B. | [arc cosa,π-arc cosa] | ||
C. | [arc cosa,2π-arc cosa] | D. | [π-arc cosa,π+arc cosa] |