题目内容
【题目】已知三棱锥中,为等腰直角三角形,,设点为中点,点为中点,点为上一点,且.
(1)证明:平面;
(2)若,求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)连接交于点,连接,通过证,并说明平面,来证明平面
(2)采用建系法以、、所在直线分别为、、轴建立空间直角坐标系,分别表示出对应的点坐标,设平面的一个法向量为,结合直线对应的和法向量,利用向量夹角的余弦公式进行求解即可
证明:如图,
连接交于点,连接,点为的中点,点为的中点,
点为的重心,则,,,
又平面,平面,平面;
,,,,
,,可得,又,
则以、、所在直线分别为、、轴建立空间直角坐标系,
则,,,,
,,.
设平面的一个法向量为,由,
取,得.设直线与平面所成角为,
则.直线与平面所成角的正弦值为.
练习册系列答案
相关题目
【题目】只红铃虫的产卵数y和温度x有关,现收集了7组观测数据作了初步处理,得到下面的散点图及一些统计量的值.
27 | 81 | 3.6 | 152 | 2936 | 38 |
其中
(1)根据散点图判断,与(e为自然对数的底数)哪一个更适宜作为红铃虫的产卵数y和温度x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)根据(2)的结果,当温度为37度时红铃虫的产卵数y的预报值是多少?
参考公式:对于一组数据,,…,,其线性回归方程的系数的最小二乘法估计值为,
参考数据:,,